/ 02 09 04 5 v 1 1 8 Se p 20 02 1 A Measurement of the τ − → μ − ν̄ μ ν τ Branching Ratio

نویسنده

  • L. Kormos
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : h ep - p h / 98 09 55 5 v 1 2 7 Se p 19 98 Radiative B c → τ ν̄ τ γ decay

The radiative Bc → τ ν̄τγ decay is analyzed in the standard model. The branching ratio of this decay is calculated and the contributions of the Bremstrahlung and structure dependent parts are compared. It is shown that this decay can be detected at LHC. PACS number(s): 13.25.Gv, 13.20.–v, 13.10.+q electronic adress: [email protected] electronic adress: [email protected]

متن کامل

ep - e x / 05 09 04 5 v 1 2 9 Se p 20 05 Measurement of the Absolute Branching Ratio for the K + → μ + ν ( γ ) Decay with the KLOE Detector

We have measured the fully inclusive K+ → μ+ν(γ) absolute branching ratio with the KLOE experiment at DAΦNE, the Frascati φ–factory. From some 865,283 K+ → μ+ν(γ) decays obtained from a sample of ∼5.2 × 108 φ-meson decays, we find BR(K+ → μνμ(γ))=0.6366±0.0009stat.±0.0015syst., corresponding to an overall fractional error of 0.27%. Using recent lattice results on the decay constants of pseudosc...

متن کامل

Nonexistence of Homoclinic Solutions for a Class of Discrete Hamiltonian Systems

and Applied Analysis 3 From (A0), (17), (19), (20), and the first equation of system (6), we have x (n+1) = n ∑ τ=−∞ β (τ) 󵄨󵄨󵄨󵄨y (τ) 󵄨󵄨󵄨󵄨 μ−2 y (τ) n ∏ s=τ [1−α (s)] −1 , ∀n∈Z, (21) x (n+1) =− +∞ ∑ τ=n+1 β (τ) 󵄨󵄨󵄨󵄨y (τ) 󵄨󵄨󵄨󵄨 μ−2 y (τ) τ−1 ∏ s=n+1 [1−α (s)] , ∀n∈Z. (22) Combining (19) with (21), one has |x (n + 1)| ν = 󵄨󵄨󵄨󵄨󵄨󵄨󵄨 n ∑ τ=−∞ β (τ) 󵄨󵄨󵄨󵄨y (τ) 󵄨󵄨󵄨󵄨 μ−2 y (τ) n ∏ s=τ [1 − α (s)] −1 󵄨󵄨󵄨󵄨󵄨󵄨...

متن کامل

02 01 1 v 2 1 4 A pr 1 99 8 Upper Limit on the Decay K + → e + ν μ + μ −

An upper limit on the branching ratio for the decay K+ → e+νμ+μ− is set at 5.0× 10−7 at 90% confidence level, consistent with predictions from chiral perturbation theory.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002